## WACHENDORFF

The Encoder Experts

Wachendorff Automation GmbH & Co. KG

Industriestraße 7 • D-65366 Geisenheim Tel.: +49 (0) 67 22/99 65 -25 • E-Mail: support-wa@wachendorff.de www.wachendorff-automation.com

### General technical data - Incremental encoders

#### Safety instructions

a. If a riskless operation can no longer be assured, the unit has to be shut down immediately and be secured against unintended start up.

b. In any case of possible hazard of people or possible damage of equipment if the encoder fail, precautions have to be taken to prevent it before start.

#### **Optical principle**

All the WDG incremental encoders from Wachendorff (except output circuits Nxx/Mxx) are based on non-contact optical scanning. The light from a high-performance LED is parallel aligned by means of a lens and shines through a lens aperture disc and a pulse disc. The aperture disc is integrated in the flange. The pulse disc is mounted on the stainless-steel shaft that is free from backlash thanks to its special bearings. If the shaft is rotated, then the combination of aperture and pulse discs cause finely defined fields to open and close. Either light is let through the grid or not. This layout means two signals are detected, phase-shifted by 90°, as well as a zero (index) pulse. The difference between light and dark is detected by receiving transistors, working differentially, mounted on the PCB on the opposite side. From this the electronic circuitry preprocesses high-precision signals and then amplifies them into industrially usable pulse-forms, for example sinusoidal or square-wave, HTL or TTL and their inverted signals.

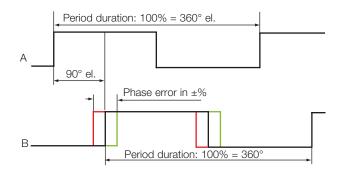
Our encoders are finely-tuned measuring systems, made up of a combination of precision mechanics, a compact optical segment and highperformance electronics.

WDG58T: 80.000 hours.

#### Optics

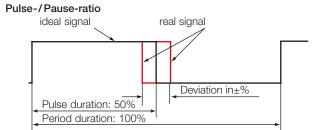
| Light source: | IR - LED            |
|---------------|---------------------|
| Service life: | typ. 100,000 hours. |
| Scanning:     | differential        |

#### Magnetic principle


The WDG incremental encoders with output circuits Nxx/Mxx work on a non-contact magnetic scanning principle. A diametral magnetised magnet is mounted in the stainless-steel shaft with its backlash-free bearings. If the shaft is rotated, the magnet and the magnetic field rotate with it. This charge in the magnetic field is detected and processed by a sensor chip on the PCB opposite. The evaluation enables 2 signals to be generated that are 90° phase-shifted as well as a zero pulse. The downstream electronics conditions these into high-precision signals and amplifies them into industrially usable square-wave pulses in HTL and TTL plus their inverted signals. Our magnetic encoders are finely-tuned measuring systems, combining precision mechanics, efficient sensor technology and high-performance electronics.

#### Accuracy incremental encoders

Shaft encoders have two defined types of accuracy. In each case the accuracy is given as a % of the period duration, which consists of a pulse and a pause.


The pulse/pause ratio describes the ratio of the pulse length from the period duration. The phase displacement describes the accuracy of two successive edges.

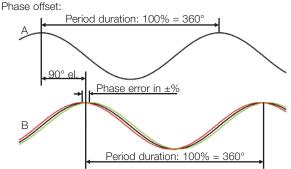
#### Phase offset:



El. phase offset:

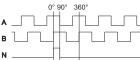
 $90^{\circ} \pm$  max. phase error 7,5% of a period duration Nxx/Mxx:  $90^{\circ} \pm$  max. phase error 25% of a period duration

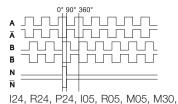



Pulse-/Pause-ratio:

≤5000 PPR: 50 % max. ±7 %,

Output circuits F24, P24, F05, P05, 645: 50 % max. ±10 % Nxx/Mxx: 1 PPR up to 128 PPR: 50 % max. ±7 % 256 PPR: 50 % max. ±9 %. 512 PPR: 50 % max. ±13 %.

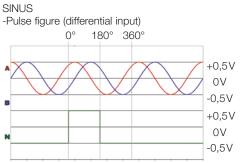

1024 PPR: 50 % max. ±18 %.


### Accuracy sinus encoders



El. phase offset:  $90^{\circ} \pm max$ . phase error 7,5% of a period duration

#### Pulse diagram






M35, P05, R30, 245, 524, 645

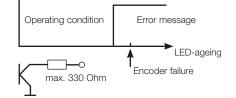
G24, F24, H24, G05, F05, H05, H30, N05, N30, N35

View from shaft end, rotating clockwise



View from shaft end, rotating clockwise

Pulse accuracy. In each case the tion, which consists of a pulse \_\_\_\_


# WACHENDORFF

The Encoder Experts

#### Light reserve warning

For the purpose of preventive maintenance, Wachendorff optical encoders that have the output circuits G24, G05, I24, I05, 524 and SIF are equipped with an early warning output. When the LED intensity drops to a level approximately 10 % of its original value, this output provides a warning of the impending failure of the encoder signals.

Nevertheless the optical encoder will continue to operate for more than 1000 hours and can thus be replaced during normal servicing. The early warning output conducts in the operating condition.



Output switching:

With light reserve warning: G05, G24, I05, I24, 524, SIF

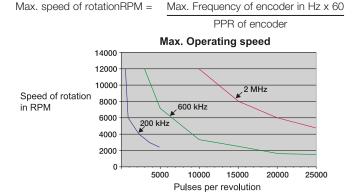
25%

Without light reserve warning:

F05, F24, H05, H24, N05, N30, N35, M05, M30, M35, P05, P24, R05, R24, R30, 245, 645, SIN

#### Mechanically rugged

All encoders have double and clearance-free shaft bearings with the maximum possible distance between the bearings, thus obtaining maximum long-term load capacity.




The bearings are treated with a special grease able to withstand extreme temperatures, high speeds and loads, as well as constant operation in reverse. The grease remains stable over a long period of time. The indicated radial-bearing load relates to the point F of the applied force. The useful life of the bearings is stated in the number of revolutions. The life can be converted into hours using the following formula:

Life in hours = Number of Revolutions  
(RPM) 
$$*$$
 60

#### Maximum Operating Speeds

The maximum operating speed is limited by the maximum mechanical operating speed (shaft speed) and by the number of pulses per revolution (PPR). The maximum operating speed is given in the specifications. The maximum speed with relation to the pulse frequency can be expressed as follows:



#### Maximum Output Frequency:

The maximum output frequency is given for the various encoders. For limiting factors such as cable lengths and diameters, please see the section on cable lengths. When designing the electronic evaluation circuitry for maximum frequencies and noise suppression, tolerances should be taken into account in order to provide a safety margin so as to handle maximum output frequencies which may occur in the specific application.

#### Wachendorff Automation GmbH & Co. KG

Industriestraße 7 • D-65366 Geisenheim Tel.: +49 (0) 67 22/99 65-25 • E-Mail: support-wa@wachendorff.de www.wachendorff-automation.com

The maximum occurring frequency  $f_{(\text{max})}\,$  can be calculated using the following formula:

f inHz<sub>(max)</sub> =  $(max shaft speed in RPM) \times (pulses per revolution PPR) 60$ 

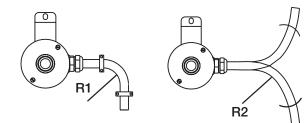
Maximum output frequency  $f_{(max)}$  in relation to cable length and operating voltage at 25 °C and 20 mA load with our Wachendorff cable:

| Output            | Power        | G24/H24           | I24/R24          |                  |
|-------------------|--------------|-------------------|------------------|------------------|
| circuit           | supply       | f <sub>aus</sub>  | f <sub>aus</sub> | 1                |
| 10 m              | 10-30 V      | 200 kHz           | 200 kHz          | 1                |
| 50 m              | 12 V         | 200 kHz           | 200 kHz          | 1                |
|                   | 24 V         | 200 kHz           | 100 kHz          |                  |
|                   | 30 V         | 150 kHz           | 50 kHz           | 1                |
| 100 m             | 12 V         | 200 kHz           | 200 kHz          |                  |
|                   | 24 V<br>30 V | 200 kHz<br>70 kHz | 50 kHz           |                  |
|                   | 30 V         |                   |                  | 1                |
| Output            | Power        | F24               | P24              |                  |
| circuit           | supply       | f <sub>aus</sub>  | f <sub>aus</sub> | ]                |
| 10 m              | 12 V         | 560 kHz           | 450 kHz          | ]                |
|                   | 24 V         | 350 kHz           | 350 kHz          |                  |
|                   | 30 V         | 280 kHz           | 280 kHz          | 1                |
| 50 m              | 12 V         | 250 kHz           | 200 kHz          |                  |
|                   | 24 V         | 150 kHz           | 100 kHz          |                  |
|                   | 30 V         | 100 kHz           | 50 kHz           | 4                |
| 100 m             | 12 V         | 300 kHz           | 150 kHz          |                  |
|                   | 24 V         | 100 kHz           | 50 kHz           | ]                |
| Output            | Power        | G05/H05           | 105/R05          | 1                |
| circuit           | supply       | f <sub>aus</sub>  | f <sub>aus</sub> | 1                |
| 100 m             | 5 V          | 200 kHz           | 200 kHz          | ]                |
| Output            | Power        | F05               | P05              | 1                |
| circuit           | supply       | f <sub>aus</sub>  | f <sub>aus</sub> | ł                |
| 100 m             | 5 V          | 2 MHz             | 2 MHz            | 1                |
| 100 111           | 5 V          |                   |                  | ]                |
| Output            | Power        | 245/524           | 645              | 1                |
| circuit           | supply       | f <sub>aus</sub>  | f <sub>aus</sub> | 1                |
| 100 m             | 10-30 V      | 200 kHz           | 2 MHz            | 1                |
| <u></u>           |              |                   | 1                |                  |
| Output<br>circuit | Power        | M30/N30           |                  |                  |
| circuit           | supply       | f <sub>aus</sub>  |                  |                  |
| 25 m              | 5-30 V       | 200 kHz           |                  |                  |
| Output            | Power        | M05/N05           | 1                |                  |
| circuit           | supply       | f <sub>aus</sub>  |                  |                  |
| 10 m              | 4,75-5,5 V   | 20 kHz            |                  |                  |
| Output            | D            | D00/1100          | NOT              | MO               |
| Output<br>circuit | Power        | R30/H30           |                  | M3               |
|                   | supply       | f <sub>aus</sub>  | f <sub>aus</sub> | f <sub>aus</sub> |
| 10 m              | 5-30 V       | 200 kHz           | 200 kHz          | 200              |
| 50 m              | 5 V          | 200 kHz           | 200 kHz          | 200              |

| circuit | supply | f <sub>aus</sub> | f <sub>aus</sub> | f <sub>aus</sub> |
|---------|--------|------------------|------------------|------------------|
| 10 m    | 5-30 V | 200 kHz          | 200 kHz          | 200 kHz          |
| 50 m    | 5 V    | 200 kHz          | 200 kHz          | 200 kHz          |
|         | 12 V   | 155 kHz          | 200 kHz          | 200 kHz          |
|         | 24 V   | 75 kHz           | 200 kHz          | 100 kHz          |
|         | 30 V   | 58 kHz           | 150 kHz          | 50 kHz           |
| 100 m   | 5 V    | 200 kHz          | 200 kHz          | 200 kHz          |
|         | 12 V   | 70 kHz           | 200 kHz          | 200 kHz          |
|         | 24 V   | 30 kHz           | 200 kHz          | 50 kHz           |
|         | 30 V   | 24 kHz           | 70 kHz           |                  |

#### Connection safety:

All encoders with output circuits G24, H24, I24, R24, F24, and P24 are reverse polarity protected and can be wired in complete safety - it does not matter if the connections are reversed, even on a long-term basis. However with all other encoders, polarity reversal, a short-circuit of the outputs or applying voltage to the outputs can lead to failure of the encoder.


# WACHENDORFF

#### The Encoder Experts

#### Wachendorff Automation GmbH & Co. KG

Industriestraße 7 • D-65366 Geisenheim Tel.: +49 (0) 67 22/99 65-25 • E-Mail: support-wa@wachendorff.de www.wachendorff-automation.com

|                                                                                     | Cable for en                                                   | icoders without lo     | ow-temperature                                                | Cable T3                                     |                                              | s with low-temperature<br>0 °C (-40 °F)                    |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|---------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------|
| Encoder types                                                                       | all encoder types<br>except 24A, 30C, 36,<br>40, 58T, 58S, 58V | 58S,<br>58V            | 24C,<br>30A, 40, 36,<br>58T                                   | 58M                                          | 24C,<br>30A,<br>36, 40                       | 50B, 53, 58, 63, 67Q,<br>70B, 80H, 100G/H/I,<br>115T, 115M |
| Core                                                                                |                                                                |                        | stranded                                                      | copper wire                                  | •                                            | `<br>                                                      |
| Cross-section for<br>singnal lines<br>power lines                                   | 0.14 mm <sup>2</sup> 0.14 mi<br>0.34 mm <sup>2</sup> 0.34 mi   |                        | 0.14 mm <sup>2</sup><br>0.14 mm <sup>2</sup>                  | 0.14 mm <sup>2</sup><br>0.14 mm <sup>2</sup> | 0.14 mm <sup>2</sup><br>0.14 mm <sup>2</sup> | 0.14 mm <sup>2</sup><br>0.34 mm <sup>2</sup>               |
| Cable cross-section                                                                 | circuits:<br>not inverted 6.3 mm<br>inverted 8.3 mm            |                        | circuits:<br>36,40 inverted: 7 mm<br>all other circuits: 6 mm | all circuits:<br>6 mm                        | all circuits:<br>6.2 mm                      | all circuits:<br>8.3 mm                                    |
| Shield                                                                              |                                                                | Tinned                 | braided copper. Strande                                       | ed filter wire for simple                    | connection                                   |                                                            |
| Outer sheath                                                                        | light-grey PVC                                                 | light-grey TPE         | light-grey PVC                                                | black PVC                                    | black PUR                                    | light-grey TPE                                             |
| Line resistance<br>for 0.14 mm <sup>2</sup> max.:<br>for 0.34 mm <sup>2</sup> max.: | 148 Ohr<br>57 Ohr                                              |                        | 148 Ohm/km                                                    | 148 Ohm/km                                   | 148 Ohm/km                                   | 148 Ohm/km<br>57 Ohm/km                                    |
| Operating capacity<br>Core/Core:<br>Core/shield:                                    |                                                                | 140 n<br>approx. 155 n |                                                               | 120 nF/km<br>approx. 120 nF/km               | 14<br>approx. 15                             | 10 nF/km<br>55 nF/km                                       |



#### Encoders without low-temperature

| Cable Ø | R1      | R2       | Temperature        |
|---------|---------|----------|--------------------|
| ≤ 7 mm  | 31,5 mm | 94,5 mm  | T > -20 °C (-4 °F) |
| > 7 mm  | 41,5 mm | 124,5 mm | T > -20 °C (-4 °F) |

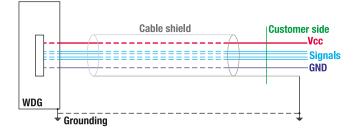
#### Encoders with low-temperature

| Cable Ø | R1      | R2       | Temperature         |
|---------|---------|----------|---------------------|
| ≤ 7 mm  | 46,5 mm | 139,5 mm | T > -40 °C (-40 °F) |
| > 7 mm  | 62,3 mm | 186,9 mm | T > -40 °C (-40 °F) |

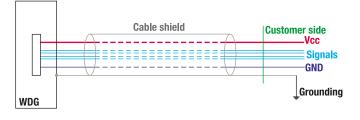
#### Encoders with cable T3

| Cable Ø | R1                  | R2                  |
|---------|---------------------|---------------------|
| 6 mm    | 30 mm               | 90 mm               |
|         | T > -40 °C (-40 °F) | T > -10 °C (-14 °F) |

#### Cable length:


Using Wachendorff encoder cable a cable run of up to 100 m is possible (150 m for SINUS encoders). However the actual achievable cable length depends on the possible effects of noise interference and should therefore be checked for each individual case. Please refer to the tables regarding the max. output frequency depending on the cable length on page 2.

#### Typical shielding concepts for encoders with cable outlet


K1, K2, K3: Screen separated at encoder.

Cable screening earthed on customer side

The encoder housing must be earthed separately.



L2/L3, T3: Cable shield connected to encoder housing. Encoder housing not earthed separately.



#### Note:

In order to avoid compensating flows which will damage the ball bearing in an earth loop, earthing on both sides is not recommended.

#### Protection from Noise Interference

For efficient protection of the entire system we recommend the following measures:

For normal applications it is sufficient to connect the shield of the encoder cable to the earth potential. The entire system, consisting of the encoder and the signal processing equipment should be grounded at one single location by using a low resistance connection (e.g. braided copper).

- In all cases the connecting cables should be shielded and should be locally kept away from power lines and other noise-generating equipment.
- Sources of interference such as motors, solenoid valves, frequency converters etc should always have their noise suppressed at source.
- Encoders should not be powered from the same mains supply as solenoid valves or contactors, as this may cause interference.

In certain applications it may be necessary to install additional protection against interference, depending on the way the system is earthed and on the noise fields present. Such measures would include: capacitive coupling of the screen, the installation of HF- filters in the encoder cable or the installation of transient protection diodes. If these or any other measures are necessary, please contact us.



Wachendorff Automation GmbH & Co. KG Industriestraße 7 • D-65366 Geisenheim Tel.: +49 (0) 67 22/99 65-25 • E-Mail: support-wa@wachendorff.de www.wachendorff-automation.com

| Кеу                      | G24 (HTL)                       | H24 (HTL)                                              | F24 (HTL)    | 124 (HTL)                                                                | R24 (HTL)           | P24 (HTL) |  |
|--------------------------|---------------------------------|--------------------------------------------------------|--------------|--------------------------------------------------------------------------|---------------------|-----------|--|
| Output circuit           |                                 | A,B,N I Signal B<br>A,B,N I Ground<br>Ground<br>Shield |              | A,B,N I Signal B<br>A,B,N I Ground<br>A,B,N I Ground<br>Ground<br>Shield |                     |           |  |
| Power supply             |                                 |                                                        | 10 VDC up    | to 30 VDC                                                                |                     |           |  |
| Current consumption      | typ. 7                          | 0 mA                                                   | typ. 100 mA  | typ. 70 mA typ. 100 mA                                                   |                     |           |  |
| Channels                 |                                 | A, B, N                                                |              | A, B, N, Ā, Ē, N                                                         |                     |           |  |
| Output                   |                                 |                                                        | push         | n-pull                                                                   |                     |           |  |
| Load                     | 1                               | max. 40 mA / channe                                    | 1            |                                                                          | max. 40 mA / channe | l         |  |
| Signal level             |                                 |                                                        | at 20 m/     | A                                                                        |                     |           |  |
|                          | H > UB - 2.5 VDC<br>L < 2.5 VDC |                                                        |              |                                                                          |                     |           |  |
| Pulse frequency          | max. 2                          | 00 kHz                                                 | max. 600 kHz | max. 200 kHz max. 600 kHz                                                |                     |           |  |
| Circuit protection       |                                 |                                                        | уе           | es                                                                       |                     |           |  |
| Light reserve<br>warning | yes                             | n                                                      | 0            | yes                                                                      | n                   | 0         |  |

| Кеу                      | G05 (TTL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H05 (TTL)                         | F05 (TTL) | N05 (TTL)              | 105 (RS422 TTL)                                                                                   | R05 (RS422 TTL) | P05 (RS422 TTL) | M05 (RS422 TTL) |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|------------------------|---------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|
| Output circuit           | ABNI OF Signal B<br>ABNI OF Signal B<br>ABNI OF Signal B<br>ABNI OF Signal B<br>ABNI OF Signal B<br>B<br>ABNI OF Signal B<br>ABNI OF SIGNA<br>ABNI OF SIGNA |                                   |           |                        | $26ET31 \qquad I \qquad $ |                 |                 |                 |
| Power supply             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4,75 VDC up to 5,5 VDC            |           |                        |                                                                                                   |                 |                 |                 |
| Current consumption      | typ. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | typ. 70 mA typ. 100 mA            |           |                        | typ. 70 mA typ. 100 mA                                                                            |                 |                 | typ. 40 mA      |
| Channels                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A, E                              | 3, N      |                        | A, B, N, Ā, Ē, N                                                                                  |                 |                 |                 |
| Output                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |           | push                   | n pull                                                                                            |                 |                 |                 |
| Load                     | ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ax. 40 mA / char                  | nnel      | max. 30 mA/<br>channel |                                                                                                   |                 |                 |                 |
| Signal level             | at 20 mA<br>H > 2.5 VDC<br>L < 0.5 VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |           |                        |                                                                                                   |                 |                 |                 |
| Pulse frequency          | max. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | max. 200 kHz max. 2 MHz max. 20 l |           |                        | max. 200 kHz max. 2 MHz max. 20                                                                   |                 |                 | max. 20 kHz     |
| Circuit protection       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |           | n                      | 0                                                                                                 |                 |                 |                 |
| Light reserve<br>warning | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es no                             |           |                        | yes no                                                                                            |                 |                 |                 |

| Кеу                      | 245<br>(RS422 TTL)                                                | 524<br>(RS422 TTL)               | 645<br>(RS422 TTL) | N30 (HTL,<br>TTL at 5 VDC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N35 (HTL,<br>TTL at 5 VDC) | H30 (HTL,<br>TTL at 5 VDC) | R30 (HTL,<br>TTL at 5 VDC)                                                      | M35 (HTL,<br>TTL at 5 VDC) | M30 (HTL,<br>TTL at 5 VDC) |
|--------------------------|-------------------------------------------------------------------|----------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------------------------------------------------------------|----------------------------|----------------------------|
| Output circuit           | <sup>5</sup> V <sub>1</sub> H O O O O O O O O O O O O O O O O O O |                                  |                    | A,B,N <sup>I</sup> I<br>A,B,N <sup></sup> |                            |                            | A,B,N I Signal<br>A,B,N I Signal<br>A,B,N I G G G G G G G G G G G G G G G G G G |                            |                            |
| Power supply             | 10 VDC up to 30 VDC                                               |                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 5 VDC up                   | to 30 VDC                                                                       |                            |                            |
| Current consumption      | typ. 7                                                            | 0 mA – – –                       | typ. 100 mA        | typ. 40 mA typ. 70 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            | typ. 40 mA                                                                      |                            |                            |
| Channels                 |                                                                   | A, B, N, A, B, N                 | 1                  | A, B, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                            | A, B, N, A, B, N                                                                |                            |                            |
| Ausgang                  |                                                                   |                                  |                    | рі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ush pull                   |                            |                                                                                 |                            |                            |
| Load                     | ma:                                                               | x. 40 mA / char                  | nnel               | max. 30 mA/<br>channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | max. 40 m                  | A / channel                                                                     |                            | max. 30 mA/<br>channel     |
| Signal level             | at 20 mA<br>H > 2.5 VDC<br>L < 1.2 VDC                            |                                  |                    | at 20 mA<br>H > Uв - 10% Uв<br>L < 2.5 VDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                            |                                                                                 |                            |                            |
| Pulse frequency          | max. 200 kHz max. 2 MHz                                           |                                  |                    | max. 200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                            |                                                                                 |                            |                            |
| Circuit protection       | only inv                                                          | only inverse-polarity protection |                    | no only inverse-polarity no protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                            |                                                                                 | no                         |                            |
| Light reserve<br>warning | no                                                                | ja                               | no                 | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                            |                                                                                 |                            |                            |